Back

The Jones Polynomial

Table of Contents

  1. The Kauffman Bracket
  2. The Jones Polynomial
  3. Sample Calculation
  4. Data Sets

The Kauffman Bracket

The Jones polynomial is a normalization of the Kauffman bracket that results in a true knot invariant. The Kauffman bracket can be defined pictorially. If \(L\) is a link diagram we define the Kauffman bracket recursively in terms of smoothings of the crossings. The empty knot has bracket polynomial 1. Given the disjoint union of a link \(L\) and an unknot \(S\) we define: \begin{equation} \langle{S\sqcup{L}}\rangle=(q+q^{-1})\langle{L}\rangle \end{equation} Lastly, the recursive step is given pictorially below. This reduces an \(n\) crossing link to \(n-1\) crossings.

Kauffman Bracket Recursion

The smoothing on the left is called a zero-smoothing and right one is called a one-smoothing. This polynomial is invariant under Reidemeister II and III moves, but not I. The recursive step can be expanded into a single sum. If we order the crossings \(0\) to \(n-1\) we note that every integer between \(0\) and \(2^{n}-1\) corresponds to a unique way of smoothing all of the crossings of the link diagram. That is, write \(k\) in binary. If the \(m^{th}\) bit is \(0\) do a zero-smoothing at the \(m^{th}\) crossing. Do a one-smoothing otherwise. If we denote the number of disjoint cycles that result from this complete smoothing by \(c(k)\) we obtain the following formula: \begin{equation} \langle{L}\rangle=\sum_{k=0}^{2^{n}-1}(-q)^{w(k)}(q+q^{-1})^{c(k)} \end{equation} where \(w(k)\) is the Hamming weight, the number of 1’s that occur in the binary expansion of \(k\). With this it is evident that the formula is exponential in the number of crossings, and is hence computationally expensive. Recent algorithms have optimized this computation quite well, but it is still a difficult calculation.

The Jones Polynomial

The Jones polynomial normalizes the Kauffman bracket by introducing a scale factor in terms of the writhe of the knot. The (unnormalized) Jones polynomial is given by: \begin{equation} J(L)=(-1)^{n_{-}}q^{n_{+}-n_{-}}\langle{L}\rangle \end{equation} where \(n_{\pm}\) are the number of positive and negative crossings in \(L\), respectively. The difference \(n_{+}-n_{-}\) is called the writhe of \(L\). With this normalization, the Jones polynomial is invariant under Reidemeister I moves, giving us a link invariant.

Sample Calculation

Let’s compute the Jones polynomial of the right-handed trefoil. Below we draw the cube of resolutions for the knot. By invoking the sum above we can calculate the Kauffman bracket of our diagram. We then normalize to obtain the Jones polynomial.

Trefoil Smooth

Since we have a 3 crossing knot, we must consider numbers between \(0\) and \(7=2^{3}-1\). One number \((000_{2})\) yields Hamming weight 0, three \((001_{2},\,010_{2},\,100_{2})\) have Hamming weight 1, three \((011_{2},\,101_{2},\,110_{2})\) give Hamming weight 2, and one \((111_{2})\) obtains Hamming weight 3. The picture above is drawn so that the columns each have a constant Hamming weight, ordered left-to-right in increasing order. All that is left to do is count the number of cycles in each drawing. Fortunately, the smoothings yield identical cycle counts in a given column. We can compute: \begin{equation} \langle{K}\rangle=\big((q+q^{-1})^{2}\big)- \big(3q(q+q^{-1})\big)+ \big(3q^{2}(q+q^{-1})^{2}\big)- \big(q^{3}(q+q^{-1})^{3}\big) \end{equation} The large parenthesis have been added to emphasize the groupings. Simplifying we obtain: \begin{equation} \langle{K}\rangle=q^{-2}+1+q^{2}-q^{6} \end{equation} The right-handed trefoil has 3 positive crossings and 0 negative crossings. The normalization factor is then \(q^{3}\). The final (unnormalized) Jones polynomial is then: \begin{equation} J(K)=q+q^{3}+q^{5}-q^{9} \end{equation} Two common normalizations are found in the literature. Firstly one may note that the Kauffman bracket of a non-empty link must be divisible by \(q+q^{-1}\). One may wish to divide this factor out. In doing so we obtain the normalized Jones polynomial. For the right-handed trefoil this is: \begin{equation} \tilde{J}(K)=q^{2}+q^{6}-q^{8} \end{equation} Lastly, many authors undertake the substitution \(q\mapsto{q}^{1/2}\). The result is a Laurent polynomial in \(\sqrt{q}\). This final version of the Jones polynomial yields the following equation for the right-handed trefoil: \begin{equation} \hat{J}(K)=q+q^{3}-q^{4} \end{equation}

Data Sets

The Jones polynomials of all knots with up to 19 crossings have been tabulated below. If you do not care about the type of knots and just want as much data as possible, download the all_jones.tar.xz file.

Data Set Compressed File Size (Bytes)
03a_torus_jones.tar.xz 208
04a_hyp_jones.tar.xz 216
05a_hyp_jones.tar.xz 220
05a_torus_jones.tar.xz 216
06a_hyp_jones.tar.xz 268
07a_hyp_jones.tar.xz 332
07a_torus_jones.tar.xz 224
08a_hyp_jones.tar.xz 540
08n_hyp_jones.tar.xz 260
08n_torus_jones.tar.xz 216
09a_hyp_jones.tar.xz 884
09a_torus_jones.tar.xz 228
09n_hyp_jones.tar.xz 396
10a_hyp_jones.tar.xz 2140
10n_hyp_jones.tar.xz 1004
10n_torus_jones.tar.xz 216
11a_hyp_jones.tar.xz 5548
11a_torus_jones.tar.xz 236
11n_hyp_jones.tar.xz 3228
12a_hyp_jones.tar.xz 18420
12n_hyp_jones.tar.xz 13800
13a_hyp_jones.tar.xz 69352
13a_torus_jones.tar.xz 244
13n_hyp_jones.tar.xz 76024
13n_satellite_jones.tar.xz 260
14a_hyp_jones.tar.xz 286332
14n_hyp_jones.tar.xz 412224
14n_satellite_jones.tar.xz 288
14n_torus_jones.tar.xz 220
15a_hyp_jones.tar.xz 1290220
15a_torus_jones.tar.xz 248
15n_hyp_jones.tar.xz 2560904
15n_satellite_jones.tar.xz 428
15n_torus_jones.tar.xz 224
16a_hyp_jones.tar.xz 6012528
16n_hyp_jones.tar.xz 15633832
16n_satellite_jones.tar.xz 544
16n_torus_jones.tar.xz 224
17a_hyp_jones.tar.xz 29558748
17a_torus_jones.tar.xz 256
17n_hyp_jones.tar.xz 107512144
17n_satellite_jones.tar.xz 1068
18a_hyp_jones.tar.xz 156508168
18n_hyp_jones.tar.xz 808901056
18n_satellite_jones.tar.xz 2476
19a_hyp_jones.tar.xz 873188556
19a_torus_jones.tar.xz 264
19n_hyp_jones.tar.xz 6017126848
19n_satellite_jones.tar.xz 6528
all_jones.tar.xz 8019974804